

Biomass Use in the UK and Related Research

Jenny Jones
University of Leeds

"All sixteen major UK power plants are now co-firing a proportion of biomass, at an average level of 3% (energy basis) making use of a range of fuels including wood (virgin and recycled), olive cake, palm kernal expeller, sewage sludge and energy crops."

Feedstock for co-firing in the UK by type, quantity and source

Feedstock	Quantity burned (tonnes) In 2005	% quantity burned (tonnes) In 2005	Likely country of origin	Mode of transport	Total transporterelated emissions (kg CO ₂ /tonne biomass)
Energy crops (SRC,granulated willow, miscanthus)	4,306	0.3	UK	Road	1.7
Shea residues (meal and pellets)	5,420	0.4	Africa	Ship	55.4
Sunflower pellets	20,331	1.4	Romania	Road & ship	47.1
Sewage sludge and waste derived fuels	49,155	3.5	UK	Road	3.4
Cereal co products and pellets	102,246	7.2	UK	Road	1.7
Tallow	119,828	8.5	UK	Road	1.7
Olive waste (residue and expeller)	283,222	20.1	Greece, Italy Spain	Road & ship	21.2
Wood (sawdust, chips, pellets, tall oil)	377,956	26.8	UK, Canada, Latvia, Scandinavia	Road & ship	1.7 (UK) to 42.9
Palm residues (palm kernel expeller, shell, pellets, oil)	449,657	31.8	Indonesia, Malaysia	Road & ship	106.5 (Indonesia) to 107.4 (Malaysia)
Total mass	1,412,121				
Total energy (PJ)	14.1				

Sources: UK Biomass Strategy, DEFRA, May 2007 & Evaluating the Sustainability of Co-firing in the UK, report to DTI from Themba Technology Ltd, September 2006

Large scale biomass use

Co-firing – biomass procurement and transportation is a big issue.

Many developments are importing agricultural residues and woods.

Source: Steve Martin, Drax

Research into solid biomass at Leeds

Characterisation and combustion properties of biomass:

- Energy crops (v small contribution at present)
 - Miscanthus; Short rotation willow; Reed Canary Grass; Switchgrass; short rotation forestry.
- Wood & forestry residues (v large contribution)
- Agricultural residues (v large contribution especially cofiring)
 - Wheat straw
 - Tropical crop wastes

Torrefaction of biomass, and its impact in grindability and combustion properties of biomass.

Biomass Markets

Knowledge Transfer Partnerships

What might we want to understand/control/modify in biomass?

Metal/ash/inorganics composition and concentration

Combustion rates and burn-out of the char, emissions

Ease of milling/size reduction

Density – volumetric density and energy density

Yields, growth rates

Agricultural and water inputs

Moisture content and ease of drying

Biochemical composition (lignin/cellulose/hemicellulose)

Examples of Imported biomass studied

Palm kernel expeller Shea residue Olive residue

- Oil extracted from both palm fruit (flesh) and kernel (nut)
- PKE: fibrous remains from the kernel oil extraction process.

- Shea butter extracted from kernel of shea fruit
- Residue: fleshy mesocarp, shell and husk left after removal of butter
- Olive residues: crushed olive kernel, shell, pulp, skin
- Imported as cake, expeller, or pellets

Imported biomass characterisation

Parameter	PKE	Shea residue	Olive residue A	Olive residue B	Olive residue C
C (% daf)	51.12	54.24	54.42	54.33	51.38
H (% daf)	7.37	6.58	6.82	7.20	6.32
N (% daf)	2.80	3.48	1.40	1.39	1.45
O (% daf) ^a	38.71	35.70	37.36	37.08	40.85
C/N	21.32	18.21	45.41	45.59	41.33
Moisture (% ar)	7.60	8.42	6.40	4.61	5.19
Volatiles (% ar)	72.12	57.06	65.13	70.68	55.51
Fixed carbon (% ar) ^a	16.18	27.62	19.27	17.17	17.31
Ash (% ar)	4.10	6.90	9.20	7.54	21.99
HHV (MJ/kg) dry basis ^b	20.00	20.37	22.47	20.25	16.10
Ash composition (% dry basis)				
Al_2O_3	0.87	1.29	1.94	0.85	2.74
→ CaO	11.90	5.51	15.44	9.40	19.49
Fe_2O_3	5.70	2.37	2.14	0.75	5.29
\longrightarrow K ₂ O	21.43	42.57	31.04	32.08	4.41
\longrightarrow MgO	11.51	6.83	5.78	2.87	5.25
$\mathrm{Mn_3O_4}$	1.03	0.05	0.05	0.02	0.33
Na_2O	0.41	0.95	0.47	0.33	0.35
\longrightarrow SiO ₂	16.51	14.40	21.10	10.88	67.40
Total ash components	69.35	73.97	77.96	57.18	105.25

^a calculated by difference, ^b calculated by method in Friedl et al. 2005

Ash Fusion Tests

Slagging and fouling indices

Fuel	Alkali index	Base to	Base	
	(kg alkali/GJ)	acid ratio*	percentage	
PKE	0.48	2.93	50.94	
Shea residue	1.61	3.71	58.23	
Olive residue A	1.57	2.38	54.87	
Olive residue B	1.27	3.88	45.44	
Olive residue C	0.69	0.50	34.79	

 $R_{b/a}$ = % (Fe₂O₃ + CaO + MgO + K₂O +Na₂O)

 $\% (SiO_2 + TiO_2 + Al_2O_3)$

Al= kg (
$$K_2O + Na_2O$$
)
GJ

Photo courtesy of W. Livingstone, Doosan Babcock

(Jenkins et al. 1998)

Al>0.34 kg alkali/GJ — fouling virtually certain! (Miles et al. 1996)

Slagging — olive B>shea >PKE>olive A>olive C

^{*}TiO₂ not included

Biomass ash softening temperatures

Can energy crops be tailored for their end use?

- Within Supergen Bioenergy, Rothamsted Research and IBERS hold the Willow and Miscanthus genetic collection.
- Collaborative work is looking at the variation in biochemical and fuel composition as well as thermal conversion properties.
- Within Supergen Bioenergy, Rothamsted Research are conducting agronomy trials of energy crops, and collaborative work is seeking to examine the influence of agronomy on fuel characteristics.

Energy crops – variability and reliability of supply

Seasonal variation in metal content (dry) in an energy crop

Both concentration, and relative concentrations of inorganics vary with growing time – *expect impacts on combustion characteristics*

Energy Crops Fuel quality indicators

Fuel quality indicators for switchgrass:

Harvest could be moved forward without loss of fuel quality and with a 50% increase in dry matter yield.

Data from Rothamsted-Research

Miscanthus agronomy and fuel quality

270 Miscanthus agronomy samples characterised and tested for thermochemical behaviour. Certain properties of Miscanthus are influenced by agronomy – for e.g. variation in Alkali index with sampling date for different fertilizer treatments and leaves versus stems:

Alkali index of stems

Baxter X. C., et al. (2009) The Influence of inorganic constituents in Miscanthus Combustion. 17th European Biomass Conference and Exhibition, 29th June -3rd July, Hamburg

Ash Fusion Tests

Н

Original sample

Ash melting behaviour of Miscanthus varies with both time of harvest and fertiliser treatment and with leaves (diamonds) versus stems (squares)

Shrinkage

Emissions - nitrogen partitioning

Parameters	PKE	Shea residue	Olive residue A	Olive residue B	Olive residue C
C (% daf)	91.46	89.34	84.30	85.78	86.23
H (% daf)	2.74	3.14	2.50	2.64	3.48
N (% daf)	4.37	2.49	1.10	1.40	1.18
C/N in fuel	21.32	18.21	45.41	45.59	41.33
C/N	24.41	41.92	89.48	71.49	85.57
Moisture (%) ^b	0.26	0.98	0.00	0.81	0.36
Ash (% dry basis) ^b	62.44	32.20	36.78	40.90	73.65
Char yield (% dry basis) ^c	14.76	39.59	26.95	33.06	44.38
Volatile yield (% dry basis) ^c	85.24	60.41	73.05	66.94	55.62
N partitioning					
N (%) in char	9.03	20.67	18.22	17.32	12.22
N (%) in volatiles	90.97	79.33	81.78	82.68	87.78

^a calculated by difference

^b from combustion in STA-MS (hr 10°C min⁻¹ to 600°C)

^c from char preparation (hr 10°C ms⁻¹ to 1000°C)

*DTA with MS detection

Masses monitored:

m/z 14: N_2^{2+} and CO^{2+}

m/z 27: HCN + tail end of m/z 28 signal

m/z 28:12C16O

m/z 30: NO + $^{12}C^{18}O$

m/z 43: HCNO

 $m/z 44 : {}^{12}C^{16}O_2 + N_2O$

m/z 46: $NO_2 + {}^{12}C^{18}O^{16}O$

m/z 52: C₂N₂

PKE char

Shea residue char

^{*} from N_2^{2+} signal and m/z 14:m/z 28 ratio=0.154

Data on N-partitioning, and fundamental rate/yield data helps inform the CFD combustion group – particularly in biomass combustion mechanism development

Co-firing and Oxy-coal combustion

- Combustion of large particles
- Deposition
- Biomass combustion mechanism
- Particle flow

Prof. M Pourkashanian

Torrefaction

The Process:

• Mild temperature pyrolysis (200-300°C) treatment of solid biomass

Yielding an enhanced quality solid fuel with:

- Increased energy content (~20%)
- Reduced moisture and low re-absorbtion of moisture
- Increased friability/brittle nature

The Implications:

- Higher value product (higher thermal efficiencies)
- Reduced transport costs
- Increased storage potential (reduced storage costs and considerations)
- Potential for biomass feedstocks to be processed in existing fuel handling systems (ball mills/pulverisation)

Colour Changes

Images of a) untreated willow; b) willow C; c) willow B; d) willow A; e) willow D.

A: high T, low t, low d;

B: low T, high t, low d;

C: low T, low t, high d;

D: high T, high t, high d

Images of a) untreated Miscanthus; b) Miscanthus C; c) Miscanthus B; d) Miscanthus A; e) Miscanthus D.

Other work has studied cellulose, xylan, lignin, and other crops such as wheat straw, reed canary grass, switchgrass...

Mass and Energy Yields (Willow) UNIVERSITY OF LEEDS

Torrefaction Temperature (°C)	Energy Yield (%)	Mass Yield (%)	Energy : Mass
250	94.5	84.1	1.12
270	89.7	76.4	1.17
290	85.5	71.1	1.20

Torrefaction severity and grindability

Scanning Electron Microscopy images of untreated willow and torrefied willow residue **UNIVERSITY OF LEEDS**

SEM images of [(a) & (b)] untreated willow; and [(c) & (d)] steam torrefied willow (290°C).

Summary

- The biomass use in the UK involves a wide range of fuels including imported residues, wood residues, agricultural residues and energy crops.
- These have very different properties in terms of their composition, ash behaviour combustion behaviour and emission propensity.
- Research at Leeds is concerned with developing an understanding of the differences in combustion behaviour:
 - Slagging and fouling
 - Reaction rates
 - Emissions
- Research also concerns modifying the properties of energy crops what properties are beneficial, and how can these be achieve?
- For woody and herbaceous crops, particle size reduction is an issue for pf power stations, and torrefaction is one area under study for improving the grindability of these biomass.

Acknowledgements

Funding from the following is gratefully acknowledged:

"Supergen Bioenergy", RC grant

"Applying Coal Milling Technologies to Thermally Treated Biomass: Proof of Concept." BCURA Project B92.

"SUSTAINABLE BIOMASS BASED ENERGY SYSTEMS TO 2020 AND BEYOND." EPSRC platform grant.

"Fundamentals of torrefaction and performance of torrefied fuels" EPSRC research grant.

Contributors:

Dr. Leilani Darvell

Dr. Toby Bridgeman

Prof. Alan Williams

Xiaomian Baxter

Bijal Gudka,

Abby Saddawi

Also Thanks to:

Dave Waldron, Alstom.

Alf Malmgram, RWE nPower

Bill Livingston, Doosan-Babcock

